Author Topic: network topology  (Read 180 times)

progga34-612

  • Jr. Member
  • **
  • Posts: 51
network topology
« on: September 26, 2018, 09:08:41 PM »


Network topology
 A network topology is the arrangement of a network, including its nodes and connecting lines. There are two ways of defining network geometry: the physical topology and the logical (or signal) topology.
The physical topology of a network is the actual geometric layout of workstations. There are several common physical topologies, as described below and as shown in the illustration.
Point-to-Point
Point-to-point topology is the simplest of all the network topologies. The network consists of a direct link between two computers. This is faster and more reliable than other types of connections since there is a direct connection. The disadvantage is that it can only be used for small areas where computers are in close proximity.
Bus
Bus topology uses one main cable to which all nodes are directly connected. The main cable acts as a backbone for the network. One of the computers in the network typically acts as the computer server. The first advantage of bus topology is that it is easy to connect a computer or peripheral device. The second advantage is that the cable requirements are relatively small, resulting in lower cost.
One of the disadvantages is that if the main cable breaks, the entire network goes down. This type of network is also difficult to troubleshoot. For these reasons, this type of topology is not used for large networks, such as those covering an entire building.
Star
In star topology, each computer is connected to a central hub using a point-to-point connection. The central hub can be a computer server that manages the network, or it can be a much simpler device that only makes the connections between computers over the network possible.
Star topology is very popular because the startup costs are low. It is also easy to add new nodes to the network. The network is robust in the sense that if one connection between a computer and the hub fails, the other connections remain intact. If the central hub fails, however, the entire network goes down. It also requires more cable than bus topology and is, therefore, more expensive.
Ring
In ring topology, the computers in the network are connected in a circular fashion, and the data travels in one direction. Each computer is directly connected to the next computer, forming a single pathway for signals through the network. This type of network is easy to install and manage.
If there's a problem in the network, it is easy to pinpoint which connection is defective. It is also good for handling high-volume traffic over long distances since every computer can act as a booster of the signal. On the downside, adding computers to this type of network is more cumbersome, and if one single computer fails, the entire network goes down.
Mesh
In mesh topology, every node has a direct point-to-point connection to every other node. Because all connections are direct, the network can handle very high-volume traffic. It is also robust because if one connection fails, the others remain intact. Security is also high since data travels along a dedicated connection.